Prabhu Jagatbandhu College

Internal Assessment [Mathematics, CC1]

Full Marks: 10			Time: 30 Minutes
Answer all Questions:			
1. If the vector $\vec{F} = (x + 1)$	$-2y+az)\hat{i}+(bx-3z)$	$(y-z)\hat{j} + (4x+cy+2z)\hat{k}$	'is irrotational then constants
are			
•	• • • • •	(c) a=2, b=4,c=-1 (d) a=-	
2. If the vector field \vec{F} g	iven by $\vec{F} = (y + \sin y)$	$(z)\hat{i} + x\hat{j} + x\cos z\hat{k}$ is con	servative then its scalar
potential φ is			
		$x\sin z + c$ (c) $\varphi = x + z\sin z$	$\ln x + c$ (d)
$\varphi = xy^2 + x$	$\sin z + c$		
		given by $\phi = x^2 + y^2 - z$	
(1,1,2) desires to fly in direction should it mov		at it will get warm as soo	on as possible. In what
(a) $\frac{\sqrt{2\hat{i}+2\hat{j}-\hat{k}}}{2}$		(c) $\frac{2\hat{i}+3\hat{j}+\hat{k}}{3}$	(d) $\frac{2\hat{i}+2\hat{j}-\hat{k}}{3}$
4. Find the direction in	which the direction	nal derivative of $\phi = \frac{x^2 - y}{xy}$	$\frac{1}{2}$ at (1,1) is zero
$(a)\frac{\hat{i}+\hat{j}}{\sqrt{2}}$	(b) $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$	(c) $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$	(d) $\frac{\hat{i}+2\hat{j}+\hat{k}}{\sqrt{6}}$
5. If the pair of straight l	ine $x^2 - 2pxy - y^2$	=0 are bisectors of the pa	ir of straight lines
$x^2 - 2qxy - y^2 = 0$ then	n pq=		
(a) 0	(b) 1	(c) 2	(d) -1
6. The Equation $6x^2 - 5$	$xy - 6y^2 + 14x + 5y$	$\gamma + 4 = 0$ represents a /ar	า
(a) Pair of straig	ht lines (b) Parabo	ola (c) Ellipse (d) I	Hyperbola
			and (3,-5,6) at right angle is
(a) $x+5y+z=0$ (b) 7	x + 8y = 9 (c) $x - 5$	y + 3z = 8 (d) $4x - 7y + 3$	z = 28
	_	t joining the points (3,3,5)	and (5,4,3) on the straight
line joining the points (2)			
(a)-9 (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{3}{\sqrt{2}}$ (d)			
9. What is/are the horizon	ontal asymptotes of the	he equation $x^2y^2 - 4(x^2 -$	
(a) y=2,y=-2	(b)y=4,y=-4	(c)x=2,x=-2	(d) y=3,y=6
10. $\lim_{x\to 0} \frac{1}{1+e^{\frac{1}{x}}} = ?$			
(a) does not exist	(b) 0	(c) \hat{i}	(d)none of these