Prabhu Jagatbandhu College Department of Mathematics

(Assignment-1,Maths(Hons) 1st year,2017) (Vector Algebra)

- 1. Prove that the straight line joining the mid-points of the two non-parallel sides of a trapezium is parallel to the parallel sides and half of their sum.
- 2. ABCD is a parallelogram. P and Q are the mid-points of the sides AB and CD respectively. Show that DP and BQ trisect AC and are trisected by AC.
- 3. If the mid-points of of the consecutive sides of any quadrilateral be connected by st lines, then show that the resulting quadrilateral is a parallelogram.
- 4. Show the Medians of a triangle divides in 2:1 ratio.
- 5. Show that the vector area of the plane quadrilateral ABCD is $\frac{1}{2}(\overrightarrow{AC} \times \overrightarrow{BD})$. Show further that if $\overrightarrow{AB} = \overrightarrow{b}, \overrightarrow{AD} = \overrightarrow{d}$ $\overrightarrow{AC} = m\overrightarrow{b} + n\overrightarrow{d}$ then the vector area of ABCD is $\frac{1}{2}(m+n)(\overrightarrow{b} \times \overrightarrow{d})$
- 6. If $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are three vectors such that sum of them is zero and magnitudes are 3, 5, 7 respectively; find the angle between $\vec{\alpha}$ and $\vec{\beta}$.
- 7. Find a unit vector parallel to the xy-plane and perpendicular to the vector $4\hat{i} 3\hat{j} + \hat{k}$.
- 8. If $\vec{\alpha}$ be resolved into two components, one in the direction of unit vector \hat{e} and another perpendicular to \hat{e} , then find the components.
- 9. In any triangle ABC, with usual notation, show $a \cos B b \cos A = (a^2 b^2)/c$.
- 10. The position vector of the vertices of a triangle are $\vec{0}$, \vec{a} , \vec{b} and its area is Δ then show that $4\Delta^2 = |\vec{a}|^2 |\vec{b}|^2 (\vec{a} \cdot \vec{b})^2$

Date: 05/12/2017